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Preface

Nowadays, the use of simulations is paid much more attention than a few years
ago. Particularly in big industries, simulators are successfully introduced and
accepted as a way to evaluate design alternatives and to validate decision pro-
cesses. Simulations assist in project design as well as in optimization of existing
production facilities. Planned investments can be done directly, effectively and
with less risk.

Obviously, the advantages of simulation are indisputable and the simulators
are object of an ongoing development. However, the common modeling methods
lag far behind as one model can only be used for one project. This is a luxury
no business can afford today. The reusability of already obtained know–how is a
requirement to react quickly to the market and thus to be flexible. Particularly
reusability, however, tends to be neglected when considering simulation models.

This paper is especially concerned with multipurpose simulation for large–
scale systems whereby special emphasis is placed on mining simulation. The
practical examples and concepts outlined within the paper mostly derive from a
mine simulation project performed for the Kennecott Corporation, Utah, USA.
To underpin these approaches, multipurpose modeling concepts as well as modern
concepts for large–scale systems are further subjects to be dealt with. Additional
topics describe the visualization and representation of simulated processes and
the integration of continuous and discrete simulation approaches. In conclusion,
details of the mine project are explained more closely.

Chapter 1 discusses fundamental concepts and methods facilitating the design
of multipurpose models. It also gives a short introduction to the High Level
Architecture.

Chapter 2 describes design approaches to simulation mainly concerned with
modular modeling. This chapter continues in part the concepts of the pre-
vious chapter. Further topics deal with the integration of field–specific
knowledge in the simulation process and with Distributed Interactive Sim-
ulation.

Chapter 3 is concerned with several aspects related to the visualization of simu-
lation processes and results. It investigates different approaches and systems
based on them. In addition, it gives some hints regarding the adaptation
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of existing CAD layouts. As another subject, it suggests some ways to
optimize facility layouts and to visualize this process.

Chapter 4 focuses on the adaptation of continuous approaches to discrete simu-
lation with regard to modeling and visualization. It explains the characteris-
tics of both concepts and discusses the problems arising from a combination.

Chapter 5 finally describes the simulation project Kennecott’s Greens Creek
Mine in general and focuses on particular problems and solutions, which
then get explained more detailed. Due to the split of this paper1, only the
subsurface and the ore–mill are covered.

1This paper is split into two reports. For further information about this project, such as the
surface and the dock area, see [Göt98].
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Chapter 1

Multipurpose modeling concepts

Before we start to discuss multipurpose simulations, let us visualize the common
procedure to perform a simulation for an actual project.

1) A problem arises and shall be solved with the help of a simulation expert. The
person posing the problem is usually not very familiar with simulation as such
and therefore has no concrete idea what he can expect and how long it will
take to be realized. Thus, it is up to the modeler to develop an abstract plan
for that simulation.

2) The simulation model has to be build. This is the most complex and time
consuming process and needs an intensive communication between the one
who knows the problem in detail and the modeler. Furthermore, that period
is characterized by lots of changes partially due to insufficient specification of
some components which should be included. Quite often, the estimated time
for that purpose will be exceeded.

3) The simulation model has to be validated. Test data shall prove if the model
behaves like the real system or is at least similar. The simulation expert is
going to present the model and the results of the simulation to the customer.
The latter one gives him to understand that he really needs the results urgently,
and that the time to develop the model is over anyway. However, during the
presentation it often turnes out that the modeler had been partly mistaken
in the problem or something is not satisfying the client. Probably, the real
system was altered too, and thus the model is not up to date. The modeler
remains with only little time to do the changes in the simulation model.

4) With the changed and proven model will be performed some simulation ex-
periments. The client discloses that he has to order the equipment urgently,
and he needs the results now otherwise they will be without use for him. The
modeler continually sends partial results.

5) The final results, which lost their significance in the meantime, will be pre-
sented to the client again. He thanks the simulation expert for his efforts
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and thinks about the possibility of some changes in the running installation
process due to the outcomes of the simulation.

6) The simulation model will be saved on tape, stored in a safe and forgotten.

This sounds hard, but it shows how important flexibility and prompt realiza-
tion are for custom–tailored simulation projects. A flexible design of the simu-
lation model lays the foundations for adaptability and reusability. This chapter
will discuss some approaches to design simulations which can be used for more
than only one project.

1.1 General considerations

In a special kind of business, many systems, such as plants and facilities, are quite
similar in their key features or in the points which are interesting to analyze.
Therefore, it could save a significant amount of time to have a model that allows
one to examine the problems of most of these systems.

Initially, in many respects, it is much easier to design a model for a single
project rather than a multipurpose one, which, regarding the questions the specific
model should help to answer, requires much more effort. Some years ago, the lower
performance of computers did also prevent the writing of complex programs such
as multipurpose simulations for large–scale systems. In fact, the overhead these
models have and need to have to support the multipurpose aspect is considerable
compared with the capabilities of these computers. Today, however, there is no
reason to refuse this anymore.

In [Wal94], for instance, the author describes a model to investigate quite
different systems such as the train traffic and the telephone networks. Although
they are quite dissimilar at first sight, the structural characteristics are rather the
same. Both systems have a network like infrastructure, they need to make routes
for the transport and they share some of the operating problems as well.

Obviously, the model above is an extreme but also a good example for multi-
purpose simulations. On closer inspection, even quite different systems may have
a great deal in common. This applies to mining as well. Even though they are
found in different mine systems, the main facilities such as the ore mill, backfill
plant, stock piles and the pit system itself are very much alike. Thus, one needs
to find a common level allowing the sufficient examination for more than only one
system.

1.2 Abstract procedure

At the beginning, the intended purpose for the simulation has to be defined since
even the most abstract multipurpose simulation model will not fit all systems.
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Figure 1.1: Abstract approach to build a multipurpose model considering the key
characteristics of the target systems

If the model is to cover a great deal of systems, it might be necessary to reduce
the level of detail, whereas systems with need for precise analysis require more
detailed modeling. Hence, the model will only be a compromise between the
number of systems that can be investigated and the coverage of special features.

To determine and to define the operation field for the simulation, it is best to
make a list of features the multipurpose model should provide. By investigating
the target systems1 regarding the key features, characteristics and their relations
not only the important components will be found but also the structure the model
can be build of. To sum it up, the following steps may be carried out (see also
Figure 1.1):

1. Define the overall operation field of the multipurpose model.

2. Investigate the target systems with regard to their components and key
features.

1 The term target systems stands for an imaginable set of systems that operate in a common
manner and that could be taken as representatives for the operation field.
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3. Compare these components considering the components the model should
consist of.

4. Develop the main structure of the multipurpose model according to the
connections among the components.

5. Design the model with regard to reusability and flexibility.

Some of these steps (particularly the first three) may be performed in a slightly
different order. It might be also helpful, depending on the dynamics of the op-
eration field, to investigate some target systems first to get a clear idea of what
the operation field should be.

The main structure represents the connections between the entities the mod-
eler has chosen to subdivide the overall system. Intuitively, these will be relatively
self–contained facilities that most of the target systems contain. As more com-
ponents are modeled independently, less problems arise if changes have to be
applied since the information flow between them has been minimized and with it
the interdependencies. The subdivision of the model also provides more flexibil-
ity for the modeler and simplifies the maintenance as well. With it, however, the
interface among these modules respective objects gains in importance. It has to
be flexible enough to cover not only the current but also future purposes. In the
beginning, a discussion on this subject helps to prevent gaps. Section 2.1 shows
some strategies to build a subdivided model.

As mentioned, in mining, most of the mines are based on a general structure
which also implies similar facilities. Thus, a model containing the main compo-
nents, such as a pit system, ore mill and stock piles might be a reasonable starting
point to further design a multipurpose model for mine simulation. Depending on
the desired level of abstraction, some of these components need to be subdivided
and modeled in more detail. For a precise analysis of the pit system itself it is
significant if it is an open–pit mine or a subsurface one. On the other hand, in-
vestigations of the mill, for instance, only require an abstract source from where
the ore comes. To give another example, the model for a pit system could be
designed completely independent of the ore which is mined and which the trucks
carry. However, the chemical processes in the mill are quite different concerning
the ore type. Above all, to satisfy the claims a more or less complex model has
to be designed and the complexity is highly dependent on these claims.

Although the mine model explained in Chapter 5 was not intended to investi-
gate several mines, some of its components are self–contained enough to facilitate
reuse. At the lowest subdivision level two components can be distinguished. The
subsurface and surface area were designed relatively independently. Obviously, it
is hard to include these components in another model without significant changes,
since at this level models differ most and all specialties, in which the model be-
haves uniquely, can be found there. Hence, the components need to be further
subdivided. The mill, however, can be used quite universally because its design is
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not so special and the parameters were defined in an separate data file. Thus they
can be changed easily. All it needs is a source of crude ore and destinations for
the processed ingredients. Like this mine model, many simulation models were
build upon a quite flexible parameter set, because if they would not allow to be
modified in their behavior not much conclusions could be drawn. Indeed, some
models can be used to examine other systems without much changes.

1.3 Reusable models according to HLA

A multipurpose model should cover a certain number of systems without the
need of internal modifications. However, a more specific simulation model that,
nonetheless, promotes the reuse of its components without many changes of the
structure represents a multipurpose model as well.

The American Department of Defense (DoD) has developed the High Level
Architecture (HLA [HLA96]) for modeling and simulation. HLA is the designated
successor of DIS (see also Section 2.3). The purpose of this architecture is to
facilitate interoperability among simulations and the aforementioned reuse of the
simulation and its model.

The HLA is based on the premise that no single model or simulation can
satisfy all uses and users at all levels of resolution. An individual simulation or
set of simulations developed for one purpose can be applied to another application
under the HLA concept of the federation2.

The HLA does require that each simulation and federation document its object
model using a standard Object Model Template (OMT). These templates are
intended to be the means for open information sharing across the community
to facilitate reuse of simulations. With the use of a template, it is possible to
develop tools which allow for automated search and reasoning about object model
template data, to further facilitate cost–effective information exchange and reuse.

The backbone of an HLA federation is the Runtime Infrastructure (RTI) which
is, in effect, a distributed operating system for federations. It is implemented in
such a way that it is broadly applicable and reusable across a wide range of
modeling and simulation applications. It provides a set of basic services to the
federation, which interoperates via the RTI (Figure 1.2).

One of the goals of the HLA development process is to make as many reusable
as possible, but with open specifications which will allow for innovation and adap-
tation. The HLA does not impose the internal system architecture of a federate3,
but rather addresses the manner in which the federate operates with the RTI and
with other federates.

2A named set of interacting federates, a common federation object model, and supporting
RTI, that are used as a whole to archive some specific objective.

3A member of a HLA federation. All applications participating in a federation are called
federates. In reality, this may include Federate Managers, data collectors, live entity surrogates
simulations, or passive viewers.
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Figure 1.2: Functional view of the HLA architecture

Beyond this, the HLA framework also provides the structural basis for inter-
operability. Most of the rules appearing in the definition have been included for
that reason. Thus, the intercommunication between simulations and applications
supporting special operations obtains an increased quality with HLA. Complete
new aspects are offered to the simulation and simulation application developers,
as they are able to design tools that are applicable to more than one simulation
system.

The HLA is defined by three documents:

• The HLA Rules — general principles of the HLA applying to the federates

• The HLA Interface Specification — between federates and the Runtime
Infrastructure (RTI)

• The HLA Object Model Template (OMT) — for documenting key informa-
tion about simulations and federations

This is a serious effort to provide a specification for further modeling and
simulation. By it, it will be possible to reuse an existing model for a further one
and thus to ultimately reduce the cost and time required to create an entirely
new system for a similar purpose.



Chapter 2

Design concepts for large–scale
systems

Today’s modeler are faced with the necessity to write ever increasing simulations
in shorter time periods and to expand existing models as they represent system
changes. Hence, modern concepts in simulation, especially for large–scale models,
are particularly concerned with the following subjects (which do not claim to be
complete):

• Reuse and adaptation of existing models for other purposes, which include
the adaptation of a model to changes in the represented system

• Integration of data bases and expert systems to assist in model design and
in the determination of simulation parameters

• Distributed simulations, allowing world wide cross–linked simulations

• Visualization of simulations to facilitate the interpretation of simulation
results as well as the discovery of irregularities

The following sections deal with these subjects or describe approaches to meet
their requirements. The topic Visualization of simulations will be separately
discussed in Chapter 3.

2.1 Modular simulation models

Large–scale simulations are often written by a team. Thus the distributed work
requires definitions to ensure interoperability. A modular model with documented
coherent interfaces bears not only a high potential of reuse but further decreases
the need of coordination within the design process. Moreover, it provides a fast
way to react to changes since modules can be altered without many impacts on
the underlying model structure.
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Figure 2.1: The components of a simple mine model including their connections,
distinguished between ore and backfill related dependencies (→ ≡ impacts on)

Modularization of the simulated system

To get some assistance in modular modeling, it might be helpful to have a drawing
that visualizes the main components and their connections. Flow charts are
common to represent the different stages within the working cycle (Figure 5.5,
e.g., depicts the processing of the crude ore by an ore mill). Often, however,
the modeler only needs a rough sketch to keep track of the dependencies among
modules or to discuss the ongoing development process of the simulation model
with the customer in the early stages (Figure 2.1).

A module1 should consist of a relatively self–contained unit, such as a produc-
tion facility. By the reduction of the dependencies on other modules the interface
design becomes more simple and the connections are far more obvious. With re-
gard to the reusability of the whole model, modules should be exchangeable with
ones offering similar functionality. In a mine model, for instance, the pit system
could be an open–pit one as well as a subsurface one. If the minings would be
replaceable, a great deal of flexibility could be applied to the entire model.

Chapter 5 describes the simulation of a complex subsurface mine, written in
GPSS/H, which consists of 3 modules: the ore mill, the remaining surface plant
and the underground minings. The model promotes the reuse of these modules

1 Modularity is not bound to an object oriented simulation system allowing for inheritance
etc., which is also the reason for speaking about modules instead of objects.
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as they can be replaced to form a new model, such as the ore mill with another
mill and the subsurface with other open–pit mines. However, to model efficiently,
the modules need to be further subdivided. Therefore, the underground mines
have been implemented as modules too. Since the modules contain a defined
interface, modifications do not affect the data exchange as long as they conform
to the interface specification. Thus, the actual working cycle in the mining areas
can be altered without changes in the underlying structure.

Usually, the modeler not only wants to virtually subdivide the model but
furthermore to separate the modules into different files. This is quite handy and
refers to our more or less marked urge for order. In GPSS/H, modules can be
shared and distributed among different files. The INSERT instruction allows to
include code at arbitrary place. However, the modeler has to struggle with two
limitations of GPSS/H. The names of model elements, such as queues, facilities
etc., must be not longer than 8 characters, which makes it difficult to define
module–intern variables even labels, in particular as they cannot be hidden from
the code outside the module. An alternative is to implement the logic as macro
and to “cipher” these elements at the time the model code gets translated.

1 MODULE1 STARTMACRO#A,#B
2
3 GATE FV DEVICE#A, ∗+4 // facility is available
4
5 SEIZE DEVICE#A // seizes the facility
6 ADVANCE #B // time for whatever has to be done
7 RELEASE DEVICE#A // releases the facility
8
9 ENDMACRO

10
11
12 ...
13 MODULE1 MACRO01,3.75
14 ...
15 MODULE1 MACRO02,4.25
16 ...

The macro in line 13 expands the facility name to DEVICE01 whereas the one
in line 15 results in DEVICE02. Nonetheless, the modeler has to make sure that
both facility names are unique in the entire model code.

Macros bear a high potential of reuse because they are naturally written to
serve in multiple places and often for slightly different purposes as well. By
extraction and generalization of code (variable parameters, common interface),
modules can be built and used like modules of ordinary object libraries.

To sum up, modules are necessary to hold the design efforts on a low level
and to provide an reliable way to change the behavior of the model. Furthermore,
they help to reuse written code and with it already invested time.
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Interface design

The interface design plays an important role within the development of the sim-
ulation model. Since multipurpose models claim to provide reusable code, each
module has to specify how it connects to the model structure, what data is re-
quired and what information the module supplies. Even if the only reason is to
split the design process within a team of modelers, they have to discuss the way
the different parts will finally fit together.

Since an interface is a specification that standardizes the data exchange be-
tween the modules (or whatever the unit is referred to), all concerning entities
have to conform to it. Depending on the kind of data exchange, bidirectional and
unidirectional interfaces are distinguished. The former implies interdependence,
which forces all modules precisely to know what the other side expects, whereas
the latter requires a following module to react to the information provided by the
sender.

For example, a band conveyor could be interchangeable with a bucket dredge.
Both machines need to connect to an input and output device, but all process de-
pendent code can be encapsulated in the module. The preceding module provides
information without caring about the kind of transportation service. However,
the conveyor as well as the dredge should let untouched the data they do not
require. As the more general the interface gets designed the more different can be
the functionality of the modules. It is good practice to provide more information
than is actually required, since later modules could handle it.

In GPSS/H, the active, dynamic and universal simulation elements, called
Transactions (Xacts), lay the foundation for the information exchange between
the different modules and within the module itself. As the simulation time moves
on, the Xacts move like the dynamic element they represent in the model. Thus,
the interface has to provide a “bridge” for the transactions among the modules.
Additionally, the interface specification has to contain the following components:

• The different kinds of Xacts handled by the module, which also includes
the creation as well as the destruction of transactions. The first parameter
of the data structure each Xact is carrying can be used to define and to
identify the type. This approach requires each Xact to have at least this
parameter.

• The data structure for each type of transaction modified or otherwise af-
fected by the module.

• Whether and which module is allowed to modify a special date of the trans-
action created by the module. Sometimes the module is reliant on data that
are created by itself and must remain unchanged.

If all modules provide this information, the simulation developer is able to
perfectly arrange the model and to gain the information required without being
precisely instructed what each module internally calculates.
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In reality, the interfaces among the main modules of mine simulation example
already mentioned consist of vehicles, such as trucks and tractors crossing roads,
tunnels and bridges. The subsurface and surface area are physically linked by the
road descending into and returning from the underground (see Figure 5.2). Each
vehicle is represented by a transaction “loaded” with data, such as the kind and
amount of material they are carrying, the amount of remaining petroleum and
times when they passed several facilities. Thus, the interface actually consists
of an invisible interruption in the road whereas the internal representation exists
only as a formal specification of the transaction data structures.

As just outlined, the interface of a module becomes very important when it
has to serve in different models and even different places within a model. As
more information is supplied and as this information gets described better, more
use can be drawn from the module. However, special attention should be payed
when different modelers deal with the simulation.

Workgroup–orientated modeling

Although many simulations have been and will be written by only one modeler,
large–scale projects often require more than one person working in order to be
finished in a suitable period of time. The mine simulation project described in
Chapter 5 has been developed by a small team of two, which, nonetheless, has
showed the importance of a good coordination.

First, the project should be subdivided in parts as independent as possible
in order to minimize the data exchange between them and thus to lessen the
probability of mistakes which affect the other parts. As mentioned in the previous
section, the interface has to be defined with care and foresight since even minor
changes in the interface specification could cause major problems and efforts.

Referring to the practical example at the end of this paper, at the beginning
of the project, the customer provided topographical maps of the whole mine in-
cluding all facilities. These maps were a great help in understanding the complex
relations and aided to develop an abstract plan to coordinate the modeling pro-
cess. Because of the relatively small team, it was very easy to split this process.
The underground and the surface area were connected only by a portal, an op-
timum condition to split the model at this point and to develop an interface.
To further ensure the cooperation of these partial models, each important mod-
ification was discussed with the other team members to find the most efficient
solution possible.

In large–scale simulation projects, however, it is usually necessary for more
than one developer to be modifying modules at the same time. Bugs sometimes
creep in when modules are modified and they are mostly detected a long time
after the modification have been applied. It is actually quite easy to overwrite
changes of the others unless one is extremely careful. Matters become even more
worse when other modelers adopt the code.
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Since these problems have been observed for quite some time, there exist some
tools supporting the software developer (and in our case the simulation modeler)
by keeping track of the changes team members did to the project. One of the
more simple ones is diff. It locates changes in files of the project. Thus, it allows
a developer to have a look at the modifications done since he had the code the
last time. If something does not react the way it should, it might be caused by
recent changes. The modeler, however, will be required to periodically save the
project files or the differences between versions.

A much more sophisticated approach provides the Concurrent Versions Sys-
tem (CVS [Ber92]), which extends the notion of revision control from a collection
of files in a single directory to a hierarchical collection of directories each con-
taining revision controlled files. Directories and files in the CVS system can be
combined together in many ways to form a software release. CVS provides the
functions necessary to manage these software releases and to control the concur-
rent editing of source files among multiple developers. Every developer works in
its own directory and CVS merges the work when each developer is done.

Such a tool cannot compensate for bad coordination and insufficient project
arrangements. However, it makes the development process more secure.

2.2 Knowledge–based simulations

The model building process for a large–scale system usually requires a large
amount of first–principle knowledge of the domain. It also requires heuristic and
commonsense knowledge in order to determine the sets of phenomena to model
as well as the appropriate procedure to achieve a given goal of the analysis. Since
not all personnel participating in planning and maintaining the system have the
same knowledge about it, each of them can derive benefits from software tools
that are able to operate on a shared knowledge data base. The engineers, the
simulation developer as well as the maintenance team, e.g., would provide their
specific knowledge and simultaneously use the know–how of the others.

Figure 2.2 describes the principle architecture of a shared information sys-
tem. The knowledge and data base do not have to be necessarily separated. For
some aspects a common data base which stores information about the course of
planning, characterization of the system as well as CAD geometry data would be
more efficient. CAD and simulation applications would gain their data (in the
form of knowledge–based rules, functional relations or simple object data) out of
the same information base and thus support the data cohesion.

The knowledge base has to meet the following requirements:

• System–independent open architecture with standardized interface

• Possibility to store field–crossing knowledge

• Ability to manage access rights
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Figure 2.2: Knowledge–based simulation architecture

In spite of the different spheres of work, a lot of information is shared even if it
is necessary to map or to adapt the required information. For example, the sim-
ulation developer may use equations describing the relations among parameters
that govern the system behavior over time and apply them to the model. This
information, however, could be supplied by the engineers who are already dealing
with the various devices and environmental backgrounds. By standardizing of
the information and the programs processing them, the software can operate on
a single information base containing all data required to perform the project.

A serious approach to simulation is the Joint Data Base Elements for Modeling
and Simulation (JDBE [JDB95]) project of the American Department of Defense,
which has developed reverse engineering and data integration methodologies. The
goal of the JDBE project is to promote the effective interoperation of models and
simulations by means of data sharing achieved through information modeling and
standardization. JDBE does this by developing candidate standard data elements
and data models for subject areas in the M&S application field. By grouping
data elements by subject area and applying a data integration methodology, it is
possible to define the mappings required to share data among diverse data sources
and user information systems.

The STEP standard for exchange of product model data, including the data
description language EXPRESS [And90], has been introduced for CAD/CAM
systems. STEP provides a standard data access interface to a neutral data ex-
change file and allows for the development of software which is able to exchange
information with other applications in the process chain. EXPRESS serves as the
definition of the product data model concerning STEP. It is based on an object
orientated Entity–Relationship–Model2 which is applicable to existing object ori-

2Standard model in the early planning stage of database development. For further informa-
tion see [Heu95].
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entated data models. A special feature is the possibility to define functions that
operate on the complex data structures as well as integrity conditions for the
objects. There exist various toolkits to handle EXPRESS models and to provide
an easy to implement interface for several programming languages, such as the
ProStep toolkit ([Pro97]) for instance.

This trend, also referred to as Simultaneous Engineering of production de-
velopment and planning, is supposed to have consequences for the development
of simulation tools. Standardized data interfaces and simulation structures, such
as those provided by HLA (see also Section 1.3), may result in a new quality of
simulation design and production engineering.

2.3 Distributed simulation

Distributed simulation is another approach to simulation which incorporates the
ability to share large–scale simulations among geographically separated computers
(simulators). The simulators are interconnected via a common communication
architecture like the Internet and thus able to exchange simulation information.

There exist various vendor specific solutions. One approach, however, has be-
come a standard as Distributed Interactive Simulation (DIS ). Characteristically
for DIS is its open architecture which allows systems developed by different ven-
dors to operate within DIS as well as the modular design of its components. The
latter also requires that each component connects to the overall system in a well
defined and uniform manner. The benefits of a modular architecture have been
already discussed in the previous sections. DIS also claims to be interactive. This
aspect of DIS relates to the fact that within the simulated environment, people,
machines and situational factors, to name only a few, can influence one another
and vice versa.

Despite the fact that DIS was greatly influenced by the American Depart-
ment of Defense (DoD) and is being developed for use within the military, there
is a growing push to apply this technology to other settings such as factories,
research laboratories and office environments. Probably, the most obvious use
of DIS involves training. Providing individuals and groups the opportunity to
perform activities and make decisions in simulated environments, can produce
highly effective results. Another area where DIS can be applied is in the design
and development process. By it, it will be possible to design virtual prototypes
and to interact with them. The engineers, although geographically separated,
could work together to ultimately reduce the cost and time normally necessary
to develop a prototype.

It does not need much to imagine the potential DIS has for mining. The
training of hazard situations such as accidents in the underground could save
time and lives. Even in the development stage some aspects could be simulated
and interactively experienced to discover problems. Virtual prototyping can help
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to design optimized mine models before any cost intensive decisions are made. By
a standardized communication structure and on base of a shared virtual prototype
it would be possible to involve other person’s knowledge into decisions.

Although the American army is using DIS for training in virtual reality en-
vironments, DIS is not primarily concerned with virtual simulations. Since its
introduction, DIS has always been a dynamic system continuing to expand and
incorporate new technologies. Thus it can be implemented in quite different forms
of simulation environments. However, there are two documents, written by the
DoD, which should guide the program development:

• The DIS Master Plan

• The DIS Modernization Plan

The recently introduced High Level Architecture (HLA) is intended to be the
successor of DIS. This architecture provides some further approaches, such as
to significantly reduce the network traffic caused by the provision of all possible
information (broadcasting). Instead, each federate only supplies and receives
the information that is requested. HLA has been designated as the standard
technical architecture for all DoD simulations. However, in the transition, the
common toolkits and simulation environments have to provide interfaces to both
methods. There are also toolkits available which encapsulate the simulation and
hide the actually used architecture from the model. Thus the same model can
serve in both environments.



Chapter 3

Visualization of simulations

For quite some time now, simulators have been recognized tools to validate and
to assist in decisions. Since the use of simulations supporting extensive projects is
increasing, they need to be done in a way comprehensible for all who are partici-
pating in. Most simulations, however, lack appropriate presentation possibilities,
which help to explain the processes and which facilitate the interpretation respec-
tively the assessment of the results.

Usually, simulation results are presented in the form of tables and curves. Nei-
ther of these presentation forms are very attractive for the customer nor are they
easy to assess, especially if the customer is not familiar with the reflected inter-
nals. Modern computers, however, are powerful enough to offer more attractive
visualizations of simulation processes such as computer animations.

Animations aid in depicting simulation concepts and strategies visually and
thus help to increase the acceptance of the simulation results. Furthermore,
irregularities in the simulated system, such as supply shortfalls or deadlocks, are
easier and quicker detected than by evaluating tables or curves. This chapter
describes the different approaches and problems concerning the visualization of
simulations.

3.1 Visualization by tables and diagrams

All of the broadly available simulators offer a way to present simulation results
in the form of tables. This is the simplest method to obtain values out of the
simulation run and, indeed, sufficient for small projects. However, large–scale
models contain a multitude of information, which needs to be summarized and
expressed by representations easier to access.

If the simulation system supports the output of data in a manner freely
specified by the modeler, a third party application may perform the process-
ing. Spreadsheet programs, e.g., are well suited to present and to further process
numerical data. Most of them are able to import tables in the form of simple
ASCII–files containing values tabulated by separators. Hence, the results of dif-
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ferent simulation runs can be stored, compared and assessed with common office
software. This might be the point the customer may put on his work. Macros
developed to assist in evaluation and to facilitate repeating tasks can run on his
computer. It enables the customer to process the simulation results by himself
even if he is rather unfamiliar with the simulator.

Simulators with a graphical user interface also offer opportunities to represent
the findings, which go beyond the aforementioned approach. Diagrams help to
overlook a great amount of information and are a well suited aid to depict already
assessed data. The conclusions of multiple simulation runs can be visualized in
a way that the pros and cons for a specific modification can be seen at a glance.
For instance, to compare the effects of a modification of one and the same value
in different runs a set of pie charts may be displayed whereas bar charts better
illustrate changes of a parameter within time periods. Graphs are more likely
to be found in visualizations of continuous processes. However, discrete event
simulation does not have to lack in this kind of representation (see also Chapter
4).

Since spreadsheet applications include methods to present data as diagrams
in different ways, they emphasize their suitability once more. Despite the trend
towards ever increasing complexity of the simulators leading to simulation sys-
tems able to analyze the simulation results as well as to present these, it will
nevertheless be necessary and desirable to process the results with other planning
and analyzing tools.

3.2 Different approaches for animations

Dependent on the level of abstraction, there are different possibilities to visu-
alize the proceedings taking place during the simulation run. Often, a simple
representation in the form of tables and diagrams is sufficient. Nonetheless, some
processes need to be visualized in greater detail. Complex dependencies often ap-
pearing in large–scale systems are easier to observe in an animated representation
of the processes.

With the availability of faster and more complex graphic systems the possi-
bility to design more realistic representation arose as well, such as 3D process
animations and Virtual Reality computer simulations. The latter technology is
not yet broadly available. Nevertheless, realistic process visualizations are gain-
ing in importance. For instance, the additional information transmitted by the
third dimension may allow the observer to obtain supplementary conclusions in
robotics (the origin of that technology) and in the field of factory planning and
automation. On the other hand, 2D animations are better suited for the visu-
alization of larger areas as they have to be modeled for traffic and transport
simulations and where the space perception yields no significant improvements.

Aside the advantages, one should consider that the design of a three–dimensional
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visual model is significantly more complex. Usually, mechanical engineers build
their models with 3D design aids, whereas architects use 2D CAD software (if
they use CAD at all). Simulation systems with 3D object–libraries are available,
which help to accelerate the design process of the visual model.

However, even in the biggest library there will not be an object for each
purpose nor will each representation fit the modeler’s idea of what it should look
like. Therefore, many animation tools have at least the capability of a simple
drawing tool. Some of them contain a complete graphical construction program.
Nevertheless, for large simulation projects it could be useful to adapt an existing
CAD–layout. Using it, the simulation could be visualized in the same environment
used by the project designer and architect.

Graphical simulation systems with object library

The simulation systems this section is concerned with differ significantly from
other systems because of their ability to deal with the physical elements of a
system in physical (graphical) terms and with the logical elements of a system in
logical terms.

In the following, the discrete simulation system Quest (Deneb Robotics Inc.)
is used as an example of a graphical simulation system with an object library. As
with other systems of that kind1, Quest provides a rich assortment of graphical
representations for certain simulation elements, such as sources, buffers, machines
and conveyors. The simulation model can be designed interactively by placing
the elements on a construction plane. After connecting the relating elements, it
remains to adjust the parameters of each entity to the appropriate values. In
this way, the modeler builds a simulation model which automatically can be ani-
mated with no further effort. On the other hand, Quest also contains a powerful
simulation language not only to implement special behaviors and to extend the
functionality of certain objects but also to give the modeler full control over the
simulation.

Figure 3.1 shows a screenshot of Quest simulating a simple production system
with three flexible workcells capable of assembling three different kinds of prod-
ucts made of two components. The components Part A, Part B and Part C are
assembled with Part D to form the end products Part AD, Part BD and Part CD
respectively. The workcells Mach 1, Mach 2 and Mach 3 require the appropriate
components from two buffers to produce the end product on a cyclical basis. The
assembled products are sent from the workcells by a common buffer after which
they exit the system.

The example above is only a little beyond a minimal system and certainly not
enough to assess the design procedure compared with classical simulation (see

1Choosing Quest does not constitute any rating. Simple++ (Aesop) and AutoMod (Au-
toSimulations), e.g., offer a similar functionality.
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Figure 3.1: Screenshot of Quest simulating a simple production system
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next section). However, it provides the possibility to show the different ways of
simulation model creation.

To build such a model, the user chooses an element as needed from the appro-
priate menu and determines the graphical representation for the element. After
that, the specific adjustments for each element, such as random distributions, de-
lays or duration, have to be done. Finally, all related objects must be connected
appropriately. In Quest, a source element is selected by the mouse and depending
on its type an additional popup menu appears to give the user further choices.
With the next selected object, Quest will set up a logical connection. When all
adjustments are done, the system is ready to perform the simulation.

Quest also offers advanced features to allow users to manipulate the presen-
tation. All graphics are represented in 3D space with unlimited viewing control
including: translation, rotation, scale, light–sourced solids, perspective, and con-
tinuous motion viewing, whereupon the animation can be watched as being self
a part of the animation. Furthermore, it does not lack in appropriate tools for
analyzing the simulation results. Bar and pie charts extend the possibilities of
visualizing the output values.

Special object representations for mining simulations can be imported from
popular CAD–programs, such as ProEngineer or AutoCAD, whereas the built–in
3D drawing tool supports the creation of representations in Quest itself. Never-
theless, the need for an high end graphic workstation to perform a complex visual
simulation shall be mentioned.

It is further worth considering, that large–scale models often exhibit special
behaviors that cannot be treated by canned objects. Consequently, the modeler
has to fall back on the integrated simulation language in order to implement
special cases. Obviously, the simulation system loses a lot of its advantages.
However, for recurrent tasks, object library based simulation systems are a very
effective way to write visual simulations, although they often have disadvantages
concerning the runtime2. Since most of them allow one to design custom objects,
the invested effort may be used in the future again.

Classical simulation systems with graphical extensions

In contrast to simulation systems with an object library, the classical simulation
systems provide their services in the form of a programming language. Following,
GPSS/H 3 is taken as a representative for this category which is also the simulator
used for the practical example of Chapter 5. GPSS/H itself offers no direct
opportunity to animate simulation proceedings nor does it provide other graphical
representations of simulation results. It has to rely on graphical tools that can

2Because of the multipurpose concept, the objects contain handlers for a multitude of events,
which not only improve the flexibility but also affect the performance of the simulation.

3General Purpose Simulation System in a special implementation by J.O. Henriksen. For
further information see [HC].
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be controlled by prerecorded commands. Since most of the common presentation
programs already contain a macro language, this restriction sometimes turns out
to be an advantage in flexibility.

As previously mentioned, a simulation language gives the modeler full control
over the whole simulation, but it also requires him to know and to consider the
internal proceedings of the simulator, which often have no direct connection to
the simulation project. Therefore, many object library simulators try to keep the
modeler away from the internals, whereby he is free to focus on the simulation
itself. However, large–scale models often contain complicated logic, which can
be controlled more effectively by a simulation language. Moreover, the program-
mer has the opportunity to construct an efficient and optimized logic leading to
significant advantages concerning the runtime of the simulation.

To give an example, Listing 3.1, printed at the end of this section, shows
the GPSS/H simulation code of the production system described in the previous
section (see also Figure 3.1). For better clarity, the model has been lengthened.
The three sections simulating the machines only differ in labels. Thus, it would
be relatively easy to combine them in a macro. At the end of the listing, the
simulation presents some final results via the BPUTPIC statement. In this special
case, the modeler wants to analyze the maximum length of all buffers as well as
the average use of the machines.

104 BPUTPIC FILE=RESULTS,LINES=7,( QM(BUFFERA), QM(BUFFERB),_
105 QM(BUFFERC), QM(BUFFERD), FR(MACH1)/10, FR(MACH2)/10, FR(MACH3)/10)
106 max length BUFFERA ∗∗
107 max length BUFFERB ∗∗
108 max length BUFFERC ∗∗
109 max length BUFFERD ∗∗
110 average use MACH1 ∗. ∗∗%
111 average use MACH2 ∗. ∗∗%
112 average use MACH3 ∗. ∗∗%

Instead of presenting the values on the screen, they also could be tabulated
and stored in files for further processing using a spreadsheet or the modeler can
record the activities of the objects by using commands for an animator such as
the one mentioned next.

Proof–Animation (Wolverine Corp.), hereinafter also referred to as Proof, is
a 2D graphical animation tool containing features such as path animations, col-
lision detection and multiple views. It is mentioned here because of its ability
to be driven by commands spooled in a file called trace–file. The layout that
has been set up separately includes objects representing the active components
of the model. These objects, e.g., can be moved and modified in shape by the
external commands. Since GPSS/H can output arbitrary data, it also may record
proceedings occurring during the simulation. However, the modeler has to care
about all creations, movements and destructions of animation elements which
can lead to considerable extra work depending on the extent of the animation.
This drawback is the biggest disadvantage of this kind of system, namely, the
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absence of an interprocess communication. By it, the animation program could
share information about collisions, distances between moving objects and states
of elements with the simulation system. On the other hand, the visualization
gets significantly improved in speed as the simulation does not need to run dur-
ing the presentation. Consequently, the program performing the visualization is
completely independent from the simulator which makes it easy to use different
computers not at least in view of a presentation to a customer. Moreover, the
customer does not get static data, such as a set of transparencies. Rather he
can freely focus on the aspects he is interested in without being familiar with the
simulator itself.

The dependencies among the objects of a large–scale models are often hard to
observe for the modeler. However, minor inaccuracies can turn into major ones
concerning the questions the model should help to answer. Thus, an animation
can also be an useful tool to validate and to debug the simulation.

There are two ways to create the layout for Proof–Animation. The first refers
to the paragraph above and consists in the ability of Proof to process commands.
Since the layout file is built of instructions representing the vector graphics the
layout consists of, GPSS/H can record these as well. However, this will be the
exception. The other way is to use Proof’s integrated drawing tools which is
sufficient for smaller animations or ones with little detail. More complex repre-
sentations of objects can be assembled from simpler drawings and stored as a
class. Therefore, it is possible to build a graphical object library. Furthermore,
classes are necessary to use paths for guiding. Proof itself controls the movement
of objects (represented by classes) on the paths according to the speed each object
got assigned. While the simulation does not need to update the location of the
moving objects, it has to care about what goes next. Hence, the visualization
of the proceedings can easily amount to multiple work than necessary for the
simulation as such.

Proof–Animation is also well suited to visualize a simulation in a CAD–created
environment. The integrated DXF import filter supports the conversion into
Proof–owned format. Especially if a CAD layout of a mine or a factory building
exists, it is quite vivid to show the simulation in the same layout that the archi-
tects and engineers use. This leads to a coherent planning environment with less
need for explanations.

The simple but powerful simulation language GPSS/H makes the implemen-
tation a straight forward task. However, it does not provide any object–oriented
approaches which force or help the modeler to design a structural model. Instead
the modeler is expected to meet some guidelines. Since the simulation and ani-
mation are completely independent, changes in the simulation code often require
extensive work in the animation layout and vice versa. Therefore, the code needs
to be structured otherwise changes may cause major problems.

Above all, graphical extensions have the ability to visualize simulation pro-
ceedings and the results of simulation systems that do not offer graphical repre-
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sentations. Many of the older simulators provide no or only limited possibilities
to produce animations directly but are still powerful enough to be used ongoing.

Listing 3.1: GPSS/H simulation of a simple production system

1 ∗ GPSS/H simulation of a production system, which assembles three different
2 ∗ kinds of end products on three available flexible workcells
3
4 SIMULATE
5
6 REALLOCATECOM,25000 // allocate additional memory
7
8 RESULTS FILEDEF ’RESULTS.DAT’ // define results file
9

10 FALSE SYN 0 // synonyms for the values of
11 TRUE SYN 1 // a boolean variable
12
13 PARTA SYN 0 // synonyms for the different
14 PARTB SYN 1 // components
15 PARTC SYN 2
16 PARTD SYN 3
17
18 RSTREAM1SYN 1 // synonyms for the independent
19 RSTREAM2SYN 2 // streams of random distributions
20 RSTREAM3SYN 3
21 RSTREAM4SYN 4
22 RSTREAM5SYN 5
23 RSTREAM6SYN 6
24 RSTREAM7SYN 7
25
26 MACH1RDYBVARIABLE (( CH(BUFFERD)’ GE’1) AND( FS(MACH1))) // boolean variables
27 MACH2RDYBVARIABLE (( CH(BUFFERD)’ GE’1) AND( FS(MACH2))) // to test the state
28 MACH3RDYBVARIABLE (( CH(BUFFERD)’ GE’1) AND( FS(MACH3))) // of the machines
29
30 ASMTIME FUNCTION PB1,E3 // function to compute the
31 PARTA,RVEXPO(RSTREAM5,40)/_ // different durations of the
32 PARTB,RVEXPO(RSTREAM6,40)/_ // assembling processes
33 PARTC,RVEXPO(RSTREAM7,40)
34
35 INTEGER &XACTCNT,_ // var to assign components
36 &BUFCYL // var to distribute −"−
37
38 LET &XACTCNT=RN(RSTREAM3)@3 // initalize the variables
39 LET &BUFCYL=RN(RSTREAM4)@3 // with random values
40
41 GENERATE RVEXPO(RSTREAM2,15),,,,,1PB // SOURCE_D
42
43 ASSIGN 1,PARTD,PB // assign the sort
44 QUEUE BUFFERD // like a buffer in Quest
45 LINK BUFFERD,FIFO // put the parts in a chain
46
47 GENERATE RVEXPO(RSTREAM1,15),,,,,1PB // SOURCE_A,B,C
48
49 ASSIGN 1,&XACTCNT@3,PB // assign the sort
50 // @3 == mod 3
51 BLET &XACTCNT=&XACTCNT+1
52 BLET &BUFCYL=&BUFCYL+1
53
54 TEST L &BUFCYL@3,2,BUFFERC // distribute the different
55 TEST L &BUFCYL@3,1,BUFFERB // parts onto the 3 buffers
56
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57 BUFFERA QUEUE BUFFERA // buffer the part
58 TEST E BV(MACH1RDY),TRUE // is the machine ready ?
59 SEIZE MACH1 // occupy the machine
60 DEPART BUFFERA // leave the buffer
61
62 UNLINK BUFFERD,∗+2,1 // get one PART_D
63 TRANSFER ,DOASM1 // go to the asm process
64 DEPART BUFFERD // PART_D leaves the buffer
65 TERMINATE // we’ve no further
66 // interest for PART_D
67 DOASM1 ADVANCE FN(ASMTIME) // compute the asm time
68 RELEASE MACH1 // release the machine
69
70 TERMINATE // the assembled part
71 // could be used further
72 BUFFERB QUEUE BUFFERB
73 TEST E BV(MACH2RDY),TRUE
74 SEIZE MACH2
75 DEPART BUFFERB
76
77 UNLINK BUFFERD,∗+2,1
78 TRANSFER ,DOASM2
79 DEPART BUFFERD
80 TERMINATE
81
82 DOASM2 ADVANCE FN(ASMTIME)
83 RELEASE MACH2
84
85 TERMINATE
86
87 BUFFERC QUEUE BUFFERC
88 TEST E BV(MACH3RDY),TRUE
89 SEIZE MACH3
90 DEPART BUFFERC
91
92 UNLINK BUFFERD,∗+2,1
93 TRANSFER ,DOASM3
94 DEPART BUFFERD
95 TERMINATE
96
97 DOASM3 ADVANCE FN(ASMTIME)
98 RELEASE MACH3
99

100 TERMINATE
101
102 GENERATE ,,,1 // the defined duration for the
103 ADVANCE 1∗3600 // simulation run (1h)
104 BPUTPIC FILE=RESULTS,LINES=7,( QM(BUFFERA), QM(BUFFERB),_
105 QM(BUFFERC), QM(BUFFERD), FR(MACH1)/10, FR(MACH2)/10, FR(MACH3)/10)
106 max length BUFFERA ∗∗
107 max length BUFFERB ∗∗
108 max length BUFFERC ∗∗
109 max length BUFFERD ∗∗
110 average use MACH1 ∗. ∗∗%
111 average use MACH2 ∗. ∗∗%
112 average use MACH3 ∗. ∗∗%
113 TERMINATE 1
114
115 START 1
116 END
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Figure 3.2: Combination of Virtual Reality and simulation

Virtual Reality and interactive simulation systems

Interactive simulation systems, which enable the user to interact with the run-
ning simulation, have a high potential for further improvements of simulation
models. Virtual Reality4 (VR) as a technology to actively involve someone into
a virtual model can serve as the interface between the users and the simulator.
The observer is not limited to only watching the proceedings in the simulation
similar to being in a cinema. Instead he or she may be part of it. He or she
can modify locations of elements or change other parameters during the simula-
tion process to react to results he or she already got in this run. Complex and
lengthy simulations can be shortened as the user does not need to restart the
whole process because of small modifications. In fact, he or she may optimize the
layout of a plant without interrupting the simulation while the simulator adapts
the simulation to the new settings.

As illustrated in Figure 3.2, the Virtual Reality system takes care of the user’s
interaction with the model. The results of interactions, such as the actuated
positions of virtual objects, are transmitted via the interface to the simulator.
The changes in the model will immediately take effect and the simulator will
send updated versions of the intended actions to the Virtual Reality system.

Indeed, that kind of simulation system does much more than what many sim-
ulation projects actually seem to need. If, for instance, one only wants to analyze
the traffic volume in the underground tunnels of a subsurface mine, a Virtual
Reality visualization of all activities there would certainly be overdone. How-
ever, dangerous or high realistic situations can be simulated and studied with the
factor human. Virtual prototyping, in mining as well, leads to shorter develop-

4 In [Bau96] Virtual Reality has been defined as follows (translation): Virtual Reality is
a technology allowing real–time interactivity within a three–dimensional computer model. By
techniques of immersion, the user gets the subjective sentiment of being in a real environment.
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ment periods which makes it easier to react to the discovery of new deposits for
instance.

Many Virtual Reality simulators exist as distributed application to facilitate
the implementation of the simulation and visualization tasks. Furthermore, it
gives the opportunity to independently update each part and to distribute the
application among different computers. Particularly the Virtual Reality environ-
ment highly depends on the hardware performance of the host machine. However,
before a user may interact with the simulation the model has to be build. The
complete three–dimensional environment, which includes all objects the user may
interact with as well as the information about the relations between them, needs
to be modeled. For this purpose, special Virtual Reality modeling programs are
available, which help to design polygonal optimized models and also offer special
functionality related to Virtual Reality.

If a CAD layout of the model already exists, some work might be saved by
using it. However, even if the CAD drawing is three–dimensional, it is seldom
made for a Virtual Reality system and often contains too much detail. But the
level of detail is crucial for the performance of the visual simulation. As more
polygons are used in the scene as more computing power is needed to avoid jerky
motions during interactions. The goal is to retain the appearance of the objects
as natural as possible in spite of reducing the amount of polygons significantly.
Clarus CAD Real–Time Link (Prosolvia Clarus AB), a tool designed for this
purpose, automatically removes and joins polygons in regions specified by the
user to simplify the model but also to save as much detail as possible. Generally,
in Virtual Reality rough but textured surfaces are much better suited than fine
molded polygon surfaces. Textures convey very realistic impressions which are
hard to model.

MultiGen Pro (MultiGen Inc.) is a very sophisticated tool to design a Virtual
Reality environment. This application supports the modeler in the whole process
starting with the creation of a simple wireframe model up to the applying of
textures or the subdividing onto different levels of detail.

Up to now, there are no broadly available Virtual Reality simulation systems.
The American army is one of the motors of this technology (see also Section 1.3
and 2.3) and for a long time has been the only serious user. However, other
companies are doing research to apply the advantages of Virtual Reality to non-
military applications. Figure 3.3 shows a Virtual Reality simulation system being
developed at the Fraunhofer IFF. SOS–VR (Self–Organization Simulation5) simu-
lates production facilities in a Virtual Reality environment and allows interactive
interventions. In the last few years, much has changed on the market for Vir-
tual Reality software. More and more toolkits are appearing which provide an
extensive functionality which keep the developers implementation on a high level.

5In the self–organization simulation each object is described by the capability to create
attraction fields and by the sensitivity for these attraction fields. For further information see
[FVU97] and [VFS+97].



3. Visualization of simulations 27

Figure 3.3: SOS–VR — a Virtual Reality simulation system, courtesy of Fraun-
hofer IFF

Vega–VR (Paradigm Simulation Inc.) and SmartScene (MultiGen Inc.), to name
only two of them, provide an API to extend their functionality which is already
able to perform a Virtual Reality presentation without any lines of code.

In the future, Virtual Reality simulation systems will probably gain in im-
portance, since the concept provides a new way to combine simulations with the
possibility of real–time user interactions and thus to allow the analysis of required
personal participation in the simulated process. Furthermore, the visualization
also helps to explain the proceedings to people not familiar with abstract simu-
lations.

3.3 Adaptation of existing CAD layouts

As seen in the previous sections, an existing CAD model could be very help-
ful in the design of the visualization of a simulation. However, depending on
the available data and on the kind of representation chosen, some postediting is
required.

Most of the drawings will be 2D ones produced by the project architects or
factory engineers. Thus, in most cases, the CAD layout will be designed for the
construction rather than for the layout of a simulation. For construction plans it is
insignificant that due to the number of layers used during the design process there
are a lot of overlapping lines. However, for the animation, these overlapping lines
can cause problems. To build paths out of the drawing is much more complicated
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if there are duplicated lines. For instance, the animation tool is not able to decide
which of the lines it should take to construct paths. Animation systems allowing
movable cameras also have to deal with these unnecessary graphic primitives
slowing down the whole presentation process.

It is good practice to eliminate layers with redundant drawings and to join
similar layers. Proof–Animation, for example, produces many classes grouping
arbitrary layout elements if the source layout contains different layers. These
classes are then included in the animation layout which impedes straight forward
changes. Furthermore, if the CAD design contains more colors than the animator
selected can provide, some color deviations will occur. To prevent the animation
system from redefining colors, these adjustments should be done in the CAD
program. As mentioned in the previous section, there also exist some special
tools to reduce the complexity of a given layout. However, lower complexity
designs can also remain unchanged. As shown in Chapter 5, Proof–Animation
is an excellent visualization system for existing 2D CAD designs. Within the
imported layout, the simulation designer can place paths to connect facilities and
machines in order to animate transportation systems or to show other logistics.

An existing 2D CAD layout could also simplify the design process of a 3D
model. Most of the 3D design aids and animators are able to import popular
2D formats. After removal of inscriptions and the like, the design can serve as
a master or template. The sketch may be assigned to a base plane. According
to the side elevation, the ground area can be extruded and so converted into a
3D model. In general, for complex models an already existing CAD design can
significantly reduce the time necessary to create the model.

3.4 Layout optimization and its visualization

Occasionally, an aim of a simulation project is to find the best arrangement of
facilities, such as the best place for a machine or the optimum transport route
between stations. Since the objects do not exist independently, such a problem
cannot simply be solved in one step.

On principle, the object has to be moved, all connections and interdependen-
cies updated and the simulation and animation must be performed again. How-
ever, this procedure is hardly applicable to complex problems as they arise from
large-scale models, since it would be too time consuming and quite complicated
due to the dependencies.

Mathematical optimization methods meet this iterative procedure by changing
model parameters to obtain the extreme value of a target function. An integration
of these methods into the simulation system allows the automatic calculation
of the best arrangement. This problem has been studied in numerous articles
with the result that analytical methods from differential and variational calculus
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are not as suitable as numerical methods such as the Powell or Hooke-Jeves6

algorithm.
[Kuh93], describes optimizations concerning 3D simulation models of assem-

bly cells. These very flexible cells can accommodate robots and tables to assemble
power switches, pneumatic valves or gearboxes for drilling machines. The robots,
which are capable of preparing and assembling parts, have to be situated to pro-
vide the shortest production cycle considering in addition, the minimum number
needed is sought. This is a very complex problem, since the program controlling
each robot has also to be altered during the simulation in order to perform the
correct assembly steps.

To visualize the optimization process and to make the steps more transparent,
it would be useful to go beyond the basic animation of the assembling process for a
certain configuration. Rather, an animation of the modifications occurring during
the layout optimization process may be helpful to find the optimum configuration,
which does not necessarily mean the best. Usually, there are also other influences
to consider and not all of them can be utilized in the simulation.

According to the demands of such visualization, it might be sufficient to draw
only a graph of the modifications, showing the movements concerning the last
position. However, by recording the layout changes for each element in full detail
or by bounding boxes, further conclusions could be drawn. After this procedure
has been applied, the optimized layout will be available as well.

Another approach consists of using an interface to a mathematical optimiza-
tion process. This can be a part of the simulation environment itself or an in-
dependent mathematical engine. The High Level Architecture (see also Section
1.3) provides, with its Runtime Infrastructure, excellent conditions to combine
an HLA–written simulation with such an external math engine.

Instead of just calculating the optimum arrangement, an interactive graphical
simulation may help involve the human within the simulation. Thus, it may be
possible to represent influences which are hard to model. In state of the art Virtual
Reality simulation systems, the user can interact with the simulation during its
execution. For instance, the user arranges the components and modifies the layout
while he or she observes the effects of these changes. It is also not too difficult
to imagine that a real worker equipped with a data–glove and a head–mounted
display could be involved in the simulation. The worker would perform his tasks
as usual and simultaneously control the simulation in a way as to effect the real
system. In fact, he or she may also discover problems relating to circumstances,
which have been not deliberately modeled or which other persons would not
consider. It is no secret that the employee is the one who knows best about the
positive or negative influences on his work. (see also Section 9)

6Direct search method (numerical optimization)



Chapter 4

Continuous approaches in
discrete simulation systems

Within discrete simulation mechanisms there are a number of logic expressions
that are evaluated at discrete points in time. There is another approach to sim-
ulation known as continuous. With continuous simulation, time is controlled by
continuous variables expressed as differential equations.

Depending on the kind of system to be simulated and on the questions it
should help to answer, some components could probably be more easily repre-
sented in a continuous simulation system than by discrete mechanism. In an ore
mill, for example, there are event–based proceedings, such as the start and stop
of the milling as well as breakdowns and scheduled maintenance, whereas the
continuous ore flow is expressed by differential equations (e.g. dx/dt = 59 [t/h]).
Although some simulation systems basically enable the user to mix continuous
and discrete modeling, there are still some advantages of a pure discrete approach
not at least with regard to an element–oriented animation.

This chapter will show how continuous simulation approaches can be repro-
duced within a discrete simulation system.

4.1 Different approaches to modeling

In reality, time and space are both represented by continuous functions. Since
discrete event simulation can only approximate continuous behavior, it might
not always fit best. The representation that will ultimately be chosen may also
depend on the specific tasks to analyze. For example, the tunnel system of a sub-
surface mine may be modeled either as a conveyance system providing transport
services or as a passive facility requiring all transport occurrences to be handled
separately (Figure 4.1). If greater emphasis is given to continuous processes,
such as the transport capacity utilization or the amount of ore mined per hour,
representations by differential equations might be better suited, whereas discrete
evaluation simplifies statements about single entities and their correlating events.
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Figure 4.1: Example of a discrete and continuous simulation approach

Large–scale systems, such as plants, are usually too complex to develop an ex-
act mathematical model of all components. Furthermore, sequential controls and
the intervention of human operators cannot simply be mathematically integrated.
Hence, it will be necessary to combine both approaches.

[Aka95], goes beyond and proposes sequential control as an additional type of
model, beside continuous process and discrete event. According to his thesis, it
is more convenient to handle sequential control separately, since it has properties
of both discrete event and continuous process simulation.

4.2 Adaptation of continuous processes

The adaptation of continuous processes to discrete simulation systems raises the
problem of reproducing the differential equations by single events. Continuous
as such means determinable at any point in time. The effect within the discrete
simulation system, however, is the division of time into single events, between
which nothing exist. Since these are the only times computation has been done
for, nothing can be said about the time in between. Due to practical limits,
only a finite number of “legal” times can be evaluated and thus queried to draw
conclusions.

In calculus, a continuous function can be approximated using a number of
very small steps. As these steps are reduced in size and increased in number, the
approximation becomes closer and closer to the true function. In the limit of an
infinite number of steps of zero size, the approximation becomes an exact match
for the function (

∫
f(t) dt ).

Except for the infinite and zero amounts, this is what has to be done to adapt
continuous processes to discrete simulation systems. Referring to Figure 4.2, the
time axis is associated with the simulated time variable t of a process–dependent



4. Continuous approaches in discrete simulation systems 32

Figure 4.2: Discrete approximation of a continuous function

function. Every step of the simulation adds a small, but not infinitesimal, amount
dt to the time. Thus, the total time in the simulated world is equal to the sum of
all dt‘s. The only difficulty is to find the right time increment, which is a tradeoff
between accuracy (small time increments) and speed (large time increments).

To demonstrate the transformation on a practical example, the already con-
sidered mine example from Chapter 5 shall be taken once more. The ore mill,
although a continuous system, has been integrated to the discrete simulation
model. For a more detailed description of the mill and the surroundings see
Section 5.2.

Abstractly seen, the mill does nothing else than continuously splitting the
incoming crude ore into its ingredients at a specific input and output rate. Con-
veyors and devices which transport, crush, press or otherwise affect the ore flow
can also be modeled by differential equations. In fact, the parameters of such
devices are mostly expressed by those equations. The present millrate of 59 tons
per hour can be reproduced by 59 discrete events per hour, each of them repre-
senting 1 ton of ore. When the millrate is changing, the delay for the next event
increases or decreases as well. Since the size of the unit is crucial for the exactness
of the results, it is essential to consider the amount and frequency of variations
in the specific parameters. The higher they are the shorter must the delays be to
ensure precise analysis. For the mill, 1 ton units have proven small enough.

4.3 Visualization of continuous processes

The simulation results of continuous processes are usually depicted by curves in
the course of time. As discrete simulation only approximates continuous func-
tions, the results actually cannot be represented by curves. Strictly seen, it is not
allowed to connect values if the related parameters are not continuous. However,
as seen above, the differential equations of continuous processes can be adapted
to discrete simulation systems and thus visualized as shown.
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Figure 4.3: Continuous simulation results expressed by curves

If the intervals between the values are relatively short in view of the whole
time axis, predictions about the values in between will meet most requirements.
One should consider the possibility of the visualization tool to zoom into a curve
which then should result in a more detailed view of the curve.

In the early stages, the aforementioned mill simulation also contained a plot
of continuously changing variables (Figure 4.3). The curve depicted the concen-
tration of zinc and lead within the ore after leaving the ball–mill. Here, the
interval between two successive values was short enough to connect them by a
line. However, depended on the underlying expression, other representations,
such as polynomials of higher degree, may be better suited to interpolate the
intermediate values.



Chapter 5

Mining simulation with GPSS/H
and Proof–Animation

The mining simulation described next has been mentioned several times in the
previous chapters, and is due to a project performed for the Kennecott Corpo-
ration Utah/USA. Kennecott’s Greens Creek Mine is a lead and zinc ore mine
located on an island near Juneau, Alaska. It is currently undergoing a major
expansion project.

To provide a model that could assist in decisions and more clearly describe
the proceedings and processes, the mine had to be simulated and visualized in all
important aspects. Thus, the mining, the hauling, the milling and the shipping
of the concentrate are all shown together on same animation. This has provided
an interesting example for a general mining simulation and also raised some in-
teresting problems. Some of these problems and approaches shall be mentioned
in this chapter.

5.1 Subsurface area

The main facility, “the heart” of each mine, is the place where the ore comes
from. Since most of the other activities in the mine are highly dependent on
it, the validation of decisions due to any modifications are highly important. A
simulation can help to improve the reliability of modifications by visualizing the
effects.

Motivation

In this mine, which can be regarded as a typical subsurface mine, the mining
process is quite difficult due to complicated logistics in the tunnels. All of the
tunnels are too narrow to allow two vehicles to pass. To lessen the effect of
this bottleneck, which could obviously be the reason for a delay, there are some
bays, hereinafter referred to as Passing Bays, along the tunnels. In addition to
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Figure 5.1: Section enlargement of the subsurface area showing the main compo-
nents

these passing bays, the trucks can also use the various turn outs into the mining
areas but doing this would block the mining areas. Figure 5.1 shows the main
components of the subsurface area as they appear in the animation.

To guarantee the supply of ore to the processing facilities and to reduce the
number of vehicles in the tunnels, the returning trucks always have the priority
over these coming from the surface. The latter can also use a special tunnel, the
Loop Road, to drive faster to more far away mining areas. The simulation should
demonstrate whether or not this loop would significantly relieve the congestion
in the main tunnels.

Because of the narrow tunnels, an accident or breakdown would partially
paralyze the underground traffic. The simulation had also to show the effect of
all these possible situations. The discovering of supply shortfalls and bottlenecks,
especially in the case of underground breakdowns, was one of the main aims of
the simulation.

Furthermore, there were considerations to use ore trucks for backfill transports
in addition to the backfill trucks. Although it seems to be a good idea to use them
too, the relations are fairly complicated. For instance, if there would already be
enough backfill trucks working on this task, the ore trucks have to wait too long
at the backfill plant. On the other hand, it would increase the efficiency of the
system to use less trucks in the mine in view of the underground traffic. In this
connection, the capacity of the different trucks matters as well. The model allows
to adjust both to the users need.

At the time when the model was developed, the mining took place in two shifts
from Monday through Saturday. However, it was planed to further increase the
output of the mine by introducing a third shift as well as mining on the Sundays
also. Hence, the model also reacts on changes of the shift system.

Some mining areas are shut down or are used to store waste. To analyze the
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complex reactions due to changes in the tunnel system coupled to shutdowns of
certain areas, the simulation needs to handle this also.

Last but not least, the simulation should show the possibilities of mining
simulation and animation for the mine, and furthermore help to visualize the
complex relations and processes in an easy, comprehensible way. According to
comments by experts in mine simulation, this has been the first fully simulated
and animated underground mine.

General structure

Figure 5.2 shows a rough sketch of the architecture of the subsurface area as
appearing in the animation. The lines in the middle of the tunnels, normally
hidden, represent the paths that guide the different vehicles. The intersection
at the very top of the illustration connects the subsurface area with the mining
facilities, namely, the mill to the left and the waste areas straight ahead. Starting
from this intersection, all paths and tunnels are too narrow to allow two vehicles
to pass. As mentioned before, vehicles coming from the underground always have
priority. Hence, the tunnel system has to provide other passing opportunities.
However, the narrow tunnels do not only affect the descending vehicles. A truck
traveling up is further obstructed as the truck ahead of it causes delays. The
faster truck has to slow down and to follow in line.

All vehicles, descending or returning ones1, have to cross Greens Creek by a
small bridge next to the intersection. Between the bridge and the portal, before
the vehicles descend into the underground, the first of the 38 passing bays is
located — the only one on the surface. There are two types of passing bays, one
which allows laterally passing whereas a truck entering the other needs to drive
backward like into a parking space (Figure 5.3). Additionally, the entrances of
the mining areas as well as the entrance to the maintenance bay may be used
for passing also. To sum up, all branch tunnels can be occupied by returning
vehicles.

To prevent collisions and to secure smooth traffic, each descending vehicle has
to check whether or not it will be the only one in the next tunnel section, whether
or not a vehicle is coming in front of it and whether or not the next passing bay
is unoccupied. Only if these conditions are all true, may it enter the next section
of the tunnel. In the same way, it has to check the path if it wants to drive out
of a passing bay. This ensures a clear way for all returning vehicles and speeds
up emergency operations in case of an accident or a breakdown.

The loop road is exceptional due to its one–way character. Descending vehicles
may use this loop to drive faster to more far away located mining areas. Since
this tunnel exists on paper only, the tunnel may be closed or opened to traffic.

1The term descending vehicle is used in the following to express that this vehicle comes from
the surface whereas a returning vehicle comes from the underground and heads for the surface.
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Figure 5.2: Layout detail showing the subsurface area of the mine
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Figure 5.3: The different types of passing bays

During shift changes, all vehicles in the underground area have to drive into
the Maintenance Bay. The different kinds of vehicles line up at three parking
areas, one for tractors, one for backfill trucks and one for ore and waste trucks
together. As the name of this bay implies, the trucks and tractors are checked
and refueled. Vehicles requiring further maintenance can be repaired as well. The
ore and waste trucks stay the all day Sunday in the bay. When the next shift
begins, all teams commence the work at this point.

The areas where the ore actually gets mined, referred to as Mining Area,
branch out to both sides of the main tunnel. To depict the dynamic changes that
result from the mining and loading processes there, a dump sign stands for the
area that has been shut down and which needs to be filled whereas the digger
sign refers to the area that is still being mined (Figure 5.1).

The old mining areas are filled with backfill material, which is a mixture of
tailings from the ore mill and cement produced at the backfill plant near the mill.
The backfill trucks load the mixture, bring it to the appropriate mining areas and
dump it. On the way back they have nothing to transport.

The crude ore is carried by the ore and empty waste trucks which transport
it to a stockpile near the mill. Usually, the ore trucks descend without any load
into the underground but, as mentioned earlier, there were some considerations
to use the ore trucks for loading backfill too. Although it would lead to a better
utilization of the ore trucks, since they could bring backfill from the surface to
the underground and drive up with ore, there are also other aspects to consider.
The simulation, however, allows one to investigate both approaches.

Three areas in the underground differ from the others. Two former and now
closed mining areas (Type 4 Waste and Waste SW20 ) as well as the area at the
end of the main tunnel marked Waste Heading are used to store waste. Waste
material is brought from the surface to these special areas by waste trucks. Unlike
the other trucks that often drive without any loads, the waste trucks pick up ore
on their way back. Only if there are already trucks in all mining areas between
the waste area and the portal, do the waste truck returns without any loads.

Tractors work on all the supplementary duties, such as bringing workers and
the material into the underground.

There is no special selection plan or order by which the trucks choose their
destination. Ore, backfill and waste trucks drive to the first free section.
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In order to be able to analyze the behavior of the mine with regard to the
production and time as well as the traffic volume, the number of the different
kinds of vehicles can be varied. Furthermore, the whole subsurface area has been
designed to investigate exceptional cases such as breakdowns and accidents and
their relating effects. The connections among all the facilities are numerous, which
make it quite difficult to make decisions without simulation.

Simulation details

The layout shown in the animation is based on the original construction plans,
which have been developed using AutoCAD to design the mine. To facilitate
the import of CAD data into Proof–Animation, the layer structure as well as
unnecessary information were removed (see also Section 3.3). The original layout,
for instance, contained some geological descriptions, which were not as important
as the information that had to be added to support the animation. Aside from
providing space for objects appearing during the animation, the design has been
simplified to facilitate the perception of the complex processes.

To guide the moving objects, such as trucks and tractors, Proof–Animation
requires the modeler to define paths in the layout. As mentioned, this simulation
project was thought to be the first fully simulated and animated mine model for
a complete miming and milling operation. In order to validate this claim, the
animation had to emphasize the detailed representation of all the various compo-
nents of the mine and mill system. Hence, vehicles drive around smooth curves
instead of jumping around corners, events, such as parking, loading, unloading
or the transport of workers, have been animated to name only a few. About 300
paths had to be defined in the underground area alone.

To give a further example of the efforts spent on the visualization of the whole
mining operation in the underground area (the surface model has been developed
with the same effort but is subject of another paper2), the operating cycle of an
ore truck that transports backfill as well as ore is described in the following (see
Figure A.1 for assistance).

The ore truck starts a shift at the backfill plant. If more than one truck wants
to load backfill material, the others have to line up. After receiving the mixture
of cement and ore tailings, the ore truck drives to the intersection and stops there
until the way in front is clear. In order to come to the subsurface area, it has to
turn left. At the junction next to the Greens Creek bridge, the truck needs to
make sure that no other vehicle is on the bridge and that the passing bay behind
it is unused too. Only if these conditions are fulfilled, it may descend into the
underground. Every time an ore truck enters a new tunnel section, it must check
if another vehicle is coming up. If so, it must move into the next bay. If the
loop road is open to traffic, the truck may use this short cut to drive to the lower

2 This paper is split into two reports. For further information about this project, such as
the surface and the dock area, see [Göt98].
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mining areas unless a vehicle is blocking the entrance. After all, the ore truck
turns around in the first unoccupied mining area, where it dumps its load. The
shovel in the ore section also requires the truck to reverse in order to load ore.
The truck needs to turn again within the middle section. Once it is loaded, it
leaves the site and heads for the surface but has to check first if a vehicle is using
the gateway as a passing bay. Since returning vehicles have priority, it only has
to stop if a descending one is already in the section it wants to enter or if a vehicle
broke down in front. After the bridge, it crosses the junction and dumps at a
stockpile near the ore mill. If gas is low, it drives to the gas station. The cycle is
closed by returning to the backfill plant. If, however, the ore truck has to queue,
it may also return without backfill to the underground area.

All vehicles in the tunnels move at random speeds according to their purpose.
To prevent returning vehicles from running into or jumping over each other as
well as from colliding with descending ones, quite complicated logic had to be
used. Since Proof–Animation performs the visualization based on data recorded
during the simulation, all possibilities had to be catered for the simulation itself
(see also Section 3.2). Hence, vehicles which bottle up behind a slower one must
adapt to the speed by logic instead of by being assigned a new speed when the
animator discovers collisions. To handle these events, the following logic was
devised, which only deals with vehicles returning to the surface.

• Each tunnel segment (altogether 39) contains a counter to keep track of
the number of moving vehicles within its section. Additionally, the first
returning vehicle entering the segment sets a flag for the descending ones
indicating that this section is already used and, furthermore, assigns its
speed value to an internal path variable. The last truck or tractor which
leaves the segment removes the flag.

• Each returning vehicle entering a segment checks whether another vehicle
is already on the path. If there is, it may need to wait in front of the next
passing bay until the descending vehicle has moved into the bay. If the
vehicle already on the path is also ascending, it may need to adapt to the
speed of the one ahead. If, for whatever reason, a vehicle is blocking the
next section, it stops until the way is free again.

Listing 5.1 shows the expanded macro of the GPSS/H logic just outlined. The
next paragraph describes the simulation code for the section between passing bay
13 and 12 (see Figure 5.2).

Before reaching this code fragment, the simulated vehicle leaves the previous
segment starting at passing bay 14 and is ready to pass mining area SW780A.
The first QUEUE was added in order to obtain statistical information about the
volume of traffic as well as to determine the number of trucks currently waiting
in front of this section. The next GATE only allows a truck to pass if no truck is on
the path ahead. Otherwise, the truck must check that the one in front has gone
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some set distance (TEST in line 3). The following double GATE prevents the vehicle
from driving into a disabled truck as well as into an oncoming one. After storing
the time when the next truck may enter the section, the sequence on lines 11–13
cancels the registration of the current vehicle in the previous tunnel section. If it
has also been the last one there, the flag indicating the presence of an object (logic
switch AA141) has to be cleared as well. The code on lines 15–18 sets or resets
a temporary flag depending on whether another vehicle is in this section. The
car finally enters the segment and passes bay 13. The BPUTPIC instruction writes
the next three lines into a file defined by ATFFACE, which records the proceedings
for Proof–Animation. PL5 is a variable tied to the simulated object (see Section
5) and stores the current speed of the vehicle. The label BACK24 allows a truck
to enter the path after the bay when an ore truck turns out of the mining area
SW780A. SWTKBKDN is a macro concerned with trucks that have broken down.
The GATE below stops all vehicles in this tunnel segment if one has broken down.
As soon as the truck is repaired, it continues and updates the time when the
next one may enter the section. The GATE in line 37 refers to a flag that was
set if a vehicle has already entered the segment and not yet left. if so, the truck
adapts to the speed of the one ahead. Otherwise, it is assigned a new speed value
according to its type (lines 41–44). Last but not least, the control commands for
Proof–Animation are written and the car checks whether another truck is waiting
in front of the next tunnel section.

Listing 5.1: Code fragment controlling a tunnel section for returning vehicles

1 BA24 QUEUE TQ13TO12 // register waiting trucks
2 GATE LS AA131, ∗+2 // someone on the path in front ?
3 TEST GE AC1,&LUB13B12 // enough space for the truck ahead ?
4 GATE LR NOUP1312 // a broken truck on the path ?
5 GATE LR AA122 // someone on the path in the
6 TRANSFER SIM,, ∗−2 // opposite direction ?
7 DEPART TQ13TO12
8
9 BLET &LUB13B12=AC1+&FOLLOWUP // time for the next entry

10
11 BLET &N1413=&N1413−1 // leave the previous path
12 TEST E &N1413,0, ∗+2 // was it the last truck ?
13 LOGIC R AA141 // clear the presence indicator
14
15 GATE LS AA131, ∗+3 // set a flag if there already
16 LOGIC S AA131USD // is a car on the track
17 TRANSFER , ∗+2
18 LOGIC R AA131USD
19
20 BLET &N1312=&N1312+1 // enter the next path
21 TEST E &N1312,1, ∗+2 // was it the first one ?
22 LOGIC S AA131
23
24 ∗ Proof −Animation: set truck on path // pass the passing bay
25 BPUTPIC FILE=ATFFACE,LINES=3,(AC1,XID1,XID1,PL5 ∗&PASSBA13)
26 TIME ∗. ∗∗∗∗
27 PLACE ∗ ON UpPassBA13
28 SET ∗ TRAVEL ∗. ∗∗∗∗
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29 ADVANCE PL5∗&PASSBA13 // consider the duration
30
31 BACK24 ADVANCE 0 // jump on the path
32 SWTKBKDNMACRO PH10,PH3,SEGM:13−12,NOUP1312 // handle breakdowns
33 GATE LR NOUP1312 // hold the broken truck
34 TEST E PH54,1, ∗+2 // did thisone fail ?
35 BLET &LUB13B12=AC1+&FOLLOWUP // time for the next entry
36
37 GATE LS AA131USD,∗+3 // is there a car in front ?
38 BLET PL5=&B13TOB12 // adapt to its speed
39 TRANSFER ,A1312
40
41 TEST NE PH10,WASTETRK,B1312 // get random speed
42 BLET PL5=RVTRI(203,&SWE1312A ∗&MIN,&SWE1312A,&SWE1312A∗&MAX)
43 TRANSFER ,A1312
44 B1312 BLET PL5=RVTRI(204,&SWE1312B ∗&MIN,&SWE1312B,&SWE1312B∗&MAX)
45
46 A1312 ADVANCE 0
47 BLET &B13TOB12=PL5 // store the speed of the truck
48
49 ∗ Proof −Animation: set truck on path
50 BPUTPIC FILE=ATFFACE,LINES=3,(AC1,XID1,XID1,PL5 −(PL5 ∗&PASSBA12))
51 TIME ∗. ∗∗∗∗
52 PLACE ∗ ON BA13toBA12
53 SET ∗ TRAVEL ∗. ∗∗∗∗
54 ADVANCE PL5−(PL5 ∗&PASSBA12)
55
56 TEST E Q$TQ12TO11,0 // someone waiting ahead ?

By restricting the name length to maximum 8 characters, GPSS/H forces the
modeler to devise a quite complicated system for the names of variables, logic
switches, queues etc. As just outlined in the code fragment above, for a person
not actively involved in the development process, it is difficult to understand the
mnemonics used.

Figure 5.4 shows an abstract plan, which has been drawn to keep control over
the multitude of logic switches and facilities used to reproduce the traffic system
in the underground. Although the information on the plan seems to be recurring
and a short algorithm recorded on a much smaller sheet could probably replace
the whole sketch, there are differences. However, most important has been the
chance to obtain an overall view of the traffic system. Furthermore, the sketch
helped to prepare and to coordinate the modeling process of the whole subsurface
area.

The left column describes the tunnel starting from the portal to the end
whereas the other column illustrates the opposite way (see also Figure 5.2). To
aid in explaining the elements, a section enlargement is shown at the right. The
number 5 may represent a passing bay, the turn out of a mining area or, as in this
case, the gateway to another tunnel. The number 52 stands for the logic switch
AA52 used to signal that a descending vehicle has moved into segment SEG0506

(the section from bay 5 to bay 6). Accordingly, the number 51 represents the
logic switch AA51 indicating that a moving element has entered segment SEG0504.
The terms BA32 and BACK32 are labels, which are destinations to move to within
a tunnel. The former leads to a position directly in front of the gateway to the
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Figure 5.4: Abstract plan of the tunnel system regarding the traffic control logic
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loop road whereas the latter allows a truck to join the path exactly behind the
gateway. The five elements just described are by far not the only ones controlling
the movements in a tunnel segment. Rather they are the ones used and tested
in other parts of the model. Beyond it, some names of variables are composed
of these numbers. In summary, it can be said that such a plan or sketch is very
useful and pays for itself.

In order to facilitate the modification of the simulation parameters, the control
variables have been separated to files. Hence, it is possible to precalculate some
values by other methods and to keep the simulation data and model separate.
Furthermore, the customer can easily modify the behavior of the model to react
to changes without being familiar with the simulation system itself.

5.2 Ore mill

The surface operations also involve a mill that processes the crude ore into con-
centrate, which then can be further processed. Tailings from this mill are trucked
back to the mine to be used as backfill. The concentrate is taken by trucks to the
dock area where ships will haul it to the smelter. As the second most important
and complex facility, the mill is also one of the plant components where high
emphasis has been placed. Thus, the mill has been modeled and animated in
detail.

Motivation

Aside from just being animated, the model should also help to investigate the
mill with regard to dimensioning and sizing of its components. For instance,
the storage tanks have to be big enough to cushion the effect of a breakdown
of the related presses down–stream. This means that they should not cause the
shut down of the mill due to an impending overflow. Thus, the model offers
parameters allowing to control and to change the behavior of the mill concerning
these aspects.

Despite all shifts and downtimes, the mill has been designed to run continually.
The simulation should prove this and, if necessary, help to find solutions to avoid
bottlenecks. Obviously, the other components that affect the mill also had to be
considered within this context.

Although just being a means to an end, the integration of a continuous subsys-
tem, which the mill is an example of, into a discrete model has been challenging
(see also Chapter 4).

General structure

Figure 5.5 provides an structural view of the mill components and how they are
connected.
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Figure 5.5: Flowchart of the milling process
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To supply the mill with raw material, the ore trucks, and, under special condi-
tions the waste trucks as well, are loaded with crude ore in the underground and
return with it to a stockpile near the mill. This stockpile consist of a fixed number
of pads (currently 2) with a specific capacity. A front end loader transports the
ore to the hopper as soon as the hopper level sinks under some lower threshold.
The crusher also starts at a specific hopper level. The crushed ore is then con-
veyed to the sag–mill3 where the ore is milled until the percentage of lead and
zinc in the mixture is within set limits. The ore moves from the sag–mill to the
ball–mill4 which crushes the ore mixture once more. Both mills are controlled by
a feedback loop which occasionally speeds up or slows down the milling process in
order to achieve a tolerance. Via the floatation tanks the out–coming mixture is
divided into four different ingredients (lead, zinc, bulk and tail) and, accordingly,
split into storage tanks. To be able to ship the raw material later, the contents
of the tanks have to be dried by three presses. These presses need periodically
maintenance while the mills keep running. Obviously, the storage tanks also serve
as buffer for the presses. If, for whatever circumstances, the volume in one of the
tanks reaches the maximum level, the milling process is slowed down as it would
happen when the hopper goes empty. If the level is exceeded, the entire mill is
shut down. Lead and bulk are dried and pressed at the same press, to better use
its capacity. This happens alternately or accordingly to the level in the tanks.
The resulting concentrates are dumped onto separate piles.

The main attention is directed to the continuous processing of the crude ore.
The conception of the mill components has to guarantee the uninterrupted run
of the physical and chemical processes.

Simulation details

Most of the values representing the current state of the components are expressed
over time. The sag–mill, e.g., is not only implemented by a static capacity but also
by a dynamic millrate specified in tons per hour. These continuous parameters are
of great interest since their composition embodies the overall input and output
rate of the mill. However, continuous means determinable at each time. As
this mine model has been written in GPSS/H, a discrete simulation language,
the continuous equations had to be reproduced by single events in a way which
allows one to analyze the behavior without significant distortions. The interval
between two successive events is the smallest indivisible unit conclusions can be
drawn from. Because nothing can actually be said about the time in between,

3A sag–mill is a large cylindrical mill which has nothing in it but the ore itself. The ore is
rotated and smashes as it drops to the sides. The pieces that come out of the mill are less than
1 inch in size.

4A ball–mill is a cylindrical mill which uses high strength molybdenum balls to further reduce
the size of the pieces. The ore is rotated until it becomes quite fine — down to the size of small
sand grains.
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this interval has been carefully determined. Compared with the amounts of ore
flowing through the devices per hour, the time a ton of ore is handled by them
has proven to be small enough to ensure precise statements.

Beside scanning the values in the right interval, precise analysis requires pre-
cise modeling. Since the ore taken from the pads and loaded into the hopper comes
from different mining areas, the ratio of lead and zinc varies as well. Hence, the
composition of the ore conveyed to the sag–mill, e.g., does rarely correspond to
the amounts of the ingredients coming out of the ball–mill. The variations in
quality, even if they are not amounting to large values, have a certain impact on
the proceedings, such as the millrate. Considering these aspects, the GPSS/H
model of the sag–mill below supplies detailed information about the composition
inside.

Listing 5.2: GPSS/H model of the sag–mill

1 ∗ sag−mill subroutine
2 ∗
3 ∗ PL1 − percentage of lead (Pb) in the ore
4 ∗ PL2 − percentage of zinc (Zn) in the ore
5
6 SAGMILL1 BLET &OBSS=&OBSS+1 // bump observation ++
7 TEST L &OBSCNTS,&SAGCAP,CKWRAPS // if vector isn’t yet full,
8 BLET &OBSCNTS=&OBSS // update bump count
9 CKWRAPS TEST G &OBSS,&SAGCAP,NOWRAPS // if obs # is > 25,

10 BLET &OBSS=1 // wrap around to 1
11
12 NOWRAPS BLET &RUNS1=&RUNS1−&VECTS1(&OBSS) // back out old value
13 BLET &RUNS1=&RUNS1+PL1 // add in new value
14 BLET &VECTS1(&OBSS)=PL1 // replace old value
15 BLET &RUNAVS1=&RUNS1/&OBSCNTS // calculate present average
16
17 BLET &RUNS2=&RUNS2−&VECTS2(&OBSS) // do the same for zinc
18 BLET &RUNS2=&RUNS2+PL2
19 BLET &VECTS2(&OBSS)=PL2
20 BLET &RUNAVS2=&RUNS2/&OBSCNTS
21
22 TEST E &OBSCNTS,&SAGCAP // wait until vector is full
23 TRANSFER ,PH(2)+1 // return

Basically, the ore inside the sag–mill can be considered as split into columns
each containing 1 ton. Hence, the statistics associated with the material coming
out of this mill correspond to the smallest unit available and thus are used for
control of the logic. Each time a ton comes into the sag–mill or leaves the sag–mill,
the average amount of the ingredients inside changes.

The millrate is controlled by several factors. As mentioned above, the ratio of
the ingredients is one of them. If, for instance, the percentage of zinc leaving the
ball–mill exceeds some lower or upper limit, the millrate, which also determines
the feedrate, gets adjusted. Another factor is the fill level of the tanks. If it
reaches 80% of the maximum, the millrate is successively reduced by 20% until
the level becomes normal. Afterwards, the millrate is increased by the same
amount to get higher output.
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Since this simulation was mainly done to forecast the plant behavior in excep-
tional cases, scheduled maintenance and unscheduled breakdowns play an impor-
tant role in the model. Some of the components need periodically maintenance
every 12th, 4th or every week. The mill is also shut down for set times. Much
harder to plan, however, are the sudden breakdowns. As mentioned above, the
presses concentrating the different ingredients are crucial for the tanks upstream.
Thus a breakdown will soon paralyze the whole mill process. Two of them are
shut down for maintenance daily but an average of about 800 hours a year the
presses are out of work due to unscheduled breakdowns. The fragment below lists
the segment controlling the down times.

Listing 5.3: Segment causing scheduled and unscheduled downtimes of the presses

1 PRESSES FUNCTION RN400,C2 // presses are numbered 41 −45
2 0,41/1,45
3
4 DAYMINS FUNCTION RN390,C2 // return random time of day
5 0,0/1,1440
6
7 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8 ∗ segment to shut down 2 presses daily for scheduled maintenance
9 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

10
11 GENERATE &DAILY,,0,,20,1PH,3PL
12 SPLIT 1, ∗+1 // create two XIDs
13
14 BLET PH1=FN(PRESSES) // press to service
15 BLET PL1=FN(DAYMINS) // time starting maintenance
16 BLET PL3=RVUNI(402,1.2 ∗60,10) // time required to fix
17
18 ADVANCE PL1 // hold Xact till it’s time
19
20 BLET XL(CUMSCH)=XL(CUMSCH)+PL3 // sum of scheduled downtimes
21
22 BPUTPIC FILE=PRESS,LINES=1, SYM(FAC,PH1),AC1/60.,PL3/60.,_
23 &DAYTYPE(&OWDAYNO),XL(CUMSCH)/60.
24 ∗∗∗∗∗∗∗, ∗∗∗∗. ∗,HR,PRESS DOWN,∗∗. ∗,HRS, ∗∗∗,DAY,SCHEDULED ,CUML=,∗∗∗∗. ∗,HRS
25 BCLOSE PRESS
26
27 FUNAVAIL PH1,CO // let current process finish
28
29 ADVANCE PL3 // wait until press is fixed
30
31 FAVAIL PH1 // make press available again
32
33 TERMINATE
34
35 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
36 ∗ segment to shut down presses due to unscheduled breakdowns
37 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
38
39 ∗ &MUDNHRYR− mill unscheduled downtime [hours/year]
40 ∗ &DAYSNYR − days in year (usually 365)
41
42 GENERATE ,,,100,,2PH,2PL
43
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44 BLET PH1=FN(PRESSES) // press to service
45 BLET PL1=( FIX ((FRN404) ∗&SIMDAYS)+1) ∗24∗60 // starting time
46 BLET PL2=RVTRI(57,10,90,12 ∗60) // time to be down
47
48 BLET &TOTUNSCH=&TOTUNSCH+PL2 // sum of unscheduled downtimes
49
50 TEST LE &TOTUNSCH,(&MUDNHRYR/&DAYSNYR)∗&SIMDAYS∗60,NOTNEDED
51
52 ADVANCE PL1 // hold Xact till it’s time
53
54 BLET XL(CUMUNSCH)=XL(CUMUNSCH)+PL2 // sum of unscheduled dntms
55
56 BPUTPIC FILE=PRESS,LINES=1, SYM(FAC,PH1),AC1/60.,PL2/60.,_
57 &DAYTYPE(&OWDAYNO),XL(CUMUNSCH)/60.
58 ∗∗∗∗∗∗∗, ∗∗∗∗. ∗,HR,PRESS DOWN,∗∗. ∗,HRS, ∗∗∗,DAY,UNSCHEDULED,CUML=,∗∗∗∗. ∗,HRS
59 BCLOSE PRESS
60
61 FUNAVAIL PH1,CO // let current process finish
62
63 ADVANCE PL2 // wait until press is fixed
64
65 FAVAIL PH1 // make press available again
66
67 NOTNEDEDTERMINATE

Beside the mill–internal down times, the breakdowns of the supply or the
concentration trucks are important. However, the concentrate piles, e.g., have a
much higher capacity than the floatation and storage tanks and impacts, such as
those resulting from a press breakdown, need not be considered. Since the ore
mill is only one of the mine facilities, it cannot be treated as independent unit.



Appendix A

Screenshots of Kennecott’s
Greens Creek Mine simulation
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Figure A.2: The picture at the very top shows the first attempt to visualize the
proceedings within the ore mill. This one also contains a plot of the concentration
progress of lead and zinc after the ball–mill. However, in dialog with the customer
the layout has been altered to correspond to aspects of an easier observation. The
second figure shows the final design.
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